آزمایشگاه بررسی سیستمهای قدرت

مقدمه

این درس بصورت 1واحد درسی ارائه میشود و هدف آن آشنایی با برنامه هایی است که مسائل موجود در درس بررسی سیستمهای قدرت2 را در متلب حل میکند .مانند پخش بار،اتصال کوتاه،پایداری و...  .

در ابتدا ممکن است دانشجویان از این درس وحشت داشته باشند زیرا تصور میکنند که باید برنامه های مختلف را برای حل مسائل بنویسند !درصورتیکه چنین نیست ودانشجویان باید بتوانند با این برنامه ها کار کنند و اگر هم به برنامه نویسی احتیاج باشد در سطح ابتدایی و برای یک سری داده های محدود میباشد.

آشنایی با برنامه های نوشته شده در Mathpower یا کتاب بررسی سیستمهای قدرت نوشته هادی سعادت

ابتدا فایلهای مورد نیاز را باید در متلب معرفی کنیم برای این منظور فایلهای mathpower یا فایلهای موجود در cd هادی سعادت که همراه با کتاب آن ارائه میشود را در پوشه work در جایی که برنامه متلب نصب شده است را کپی میکنیم.سپس از گزینه file در خود برنامه متلب گزینه setpath را انتخاب کرده و فیل مورد نظر را به آن Add کرده و گزینه save را انتخاب میکنیم .بدین ترتیب فایلهای ما به برنامه معرفی شدند.

بطور کلی برنامه های مختلف برای اجرا در متلب در M-file های مختلف نوشته میشود و این فایلها بیکدیگر ارتباط پیدا کرده و یک مسئله را حل میکنند. و برای اجرای این فایلها درمتلب کافیست دستور run کردن برنامه را بدانیم برای مثال برای run کردن برنامه پخش بارAC  به روش mathpower دستور runpf(case’X’) را تایپ نموده و inter  را بفشارید(بجای X شماره کیس مورد نظر خود را وارد نمایید).و برای اجرای برنامه بروش هادی سعادت کافیست پس از باز کردن m-file گزینه run  را انتخاب نماییم.

حال کاری که ما باید انجام دهیم تجزیه و تحلیل m-file ها و همچنین بررسی نتایج حاصل از اجرای برنامه هاست.

در ایجا برنامه های نوشته شده برای پخش بار در کتاب هادی سعادت را بررسی میکنیم:

همانطور که گفته شد برای حل یک مسئله چند m-file نوشته شده که در بعضی از m-fileها داده های ورودی خطوط تعریف شده و در m-fileهای دیگر برنامه حل مسئله به روش گوس-سایدل یا نیوتن-رافسون نوشته شده و مابقی هم برای نمایش داده های خروجی میباشد.

به بررسی برنامه های مربوط به داده های ورودی میپردازیم :

Linedata : پرونده ایست که داده های ورودی خط در آن تعریف شده و شامل یک ماتریس است که ستون 1و2 آن شماره شینهای خط ، ستون 3و4و5 شامل مقاومت راکتانس ونصف سوسپتانس خط میباشد،و ستون آخر هم نشان دهنده تنظیم تپ ترانسفورماتور میباشد که معمولا عدد1 برای این ستون در نظر گرفته میشود.

Busdata :یک ماتریس شامل داده های مربوط به شینها میباشد که ستون اول آن شماره شین ، ستون2 کد شین ، ستونهای 3و4 اندازه ولتاژ برحسب pu و زاویه فاز برحسب درجه هستند ، ستون 5و6 مگاوات و مگاوار بار میباشند ، ستون 7و8و9و10 هم شامل مگاوات و مگاوار ، حداقل مگاوات و حداکثر مگاوار تولید شده است و ستون آخر هم Mvar تزریق شده توسط خازنهای موازی میباشد

Lfybus :این برنامه برای محاسبه ماتریس ادمیتانس نوشته شده که داده های امپدانسی را به ماتریس ادمیتانس تبدیل میکند این برنامه داده های ورودی خود را از پرونده های با نام linedata فرامی خواند.

برنامه های حل مسئله:

Lfgauss :این برنامه، مسئله را بروش گوس-سایدل حل میکند.

Lfnewton : این برنامه، مسئله را بروش نیوتن-رافسون حل میکند.

برنامه های نمایش داده های خروجی:

Busout :این برنامه نتیجه خروجی شین را در یک جدول نشان میدهد که اطلاعاتی همچون اندازه و زاویه ولتاژ،توانهای اکتیو و راکتیو ژنراتورها و بارها ،و.... را نشان میدهد.

Lineflow :این برنامه داده های خروجی خط را نشان میدهد و استفاده این برنامه بیشتر بمنظور مشاهده تلفات میباشد(Pmax).

تابلوهای برق

مقدمه ای دربارۀ تابلو و اجزای آن
تابلو : محفظه ای است فلزی یا غیر فلزی که تجهیزات در آن نصب شده و ارتباط الکتریکی توسط هادی ها برقرار شده و محفظه آماده بهره برداری می شود .
تابلوی برق به عنوان مجموعه ای که در آن یک یا چند وسیله قطع و وصل همراه با تجهیزات کنترل ، اندازه گیری ، حفاظتی ، تنظیم کننده و غیره ؛ به منظور ایجاد ارتباطات لازم بین آنها و سایر تجهیزات خارج از تابلو وجود دارد ، می باشد .
به طور کلی هر جا که بحث بهره برداری انرژی الکتریکی در تولید ، انتقال و توزیع و تبدیل انرژی الکتریکی و کنترل تجهیزات مصرف کننده انرژی الکتریکی مطرح باشد ، وجود تابلوهای برق ضرورت می یابد .
تابلوهای برق را می توان از جنبه های گوناگون تقسیم بندی نمود که مهمترین این تقسیم بندی ها بر اساس ولتاژ نامی تجهیزات و تابلو است . تابلوهایی که تجهیزات آنها دارای ولتاژ حداکثر تا می باشند ، در بخش فشار ضعیف قرار می گیرند و ولتاژ نامی بالاتر از یک کیلو ولت را در بخش فشار متوسط قرار می دهند که به طور معمول تجهیزات حداکثر تا درون سلول قرار داده می شود .
- اجزاء تشکیل دهندۀ هر تابلو
تجهیزات الکتریکی : لوازم الکتریکی که در تابلو استفاده می شود . عبارتست از کلیه عناصری که در مدار الکتریکی قرار می گیرند . ( به غیر از قسمت ارتباطات )
• کنتاکتور : عامل قطع و وصل مدار فرمان از راه دور
• بی متال : جهت فرمان قطع در اثر عبور جریان زیاد
• انواع رله ها : جهت ارسال فرمان قطع یا وصل در اثر عوامل مختلف و خطاهای گوناگون ( از قبیل رلۀ کنترل فاز ،• رلۀ کنترل بار ،• رلۀ زمانی یا تایمر و غیره ... )
• انواع کلیدها : جهت قطع و وصل مدار ( از قبیل کلیدهای سلکتوری ،• غلتکی ،• بوش باتون ،• میکروسوئیچ ،• فلوتر سوئیچ و غیره ... )
• تجهیزات اندازه گیری : جهت محاسبۀ پارامترهای متغییر ( نظیر آمپرمتر ،• ولتمتر ،• واتمتر ،• فرکانس متر ،• متر )
• ترانس جریان و ولتاژ : جهت کاهش یا افزایش جریان یا ولتاژ
بدنه : قسمت فلزی که تجهیزات را محصور می کند .
ارتباطات : ارتباط تجهیزات توسط هادی ها برقرار می شود . ( مثل سیم ، شینه ، کابلشو و غیره ... )
کلیۀ فعالیت قسمت های وایرینگ و شینه کشی جزء این دسته محسوب می شوند که به دو گروه ارتباطات انعطاف ناپذیر ( شینه ها ) و ارتباطات انعطاف پذیر ( سیم و کابل ) تقسیم می شوند .
- مطالبی دربارۀ مشخصات کلی تابلو ها
بسیاری از مواردی که مطرح خواهد شد در بین تابلوهای فشار ضعیف و متوسط مشترک می باشند .
چگونگی ساخت و طراحی یک تابلوی برق بر اساس تجهیزات به کار رفته در آن ، نحوۀ ارتباطات و عملکرد آنها ، نحوۀ دسترسی ها ، شرایط نصب تجهیزات و دیگر موارد تعیین می شود که به طور خلاصه به شرح زیر می باشد :
ساختمان بیرونی
محل نصب
روش نصب
شرایط نصب از نظر قابلیت انتقال
درجۀ حفاظت
روش های حفاظت افراد
حال به توضیح موارد ذکر شده در بالا می پردازیم ؛
ساختمان بیرونی : از نظر طرح بیرونی تابلوها را می توان به گروه های مختلفی تقسیم بندی کرد .
تابلوی باز (open type assembly) : تابلویی است متشکل از اسکلت نگهدارنده که تجهیزات الکتریکی بر روی آن نصب بوده و قسمتهای برق دار تجهیزات در دسترس می باشند .
تابلوی جلو بسته (dead front assembly) : تابلویی است با پوشش جبهۀ جلویی که از طرف جلو دارای حفاظتی حداقل معادل باشد ، قسمت های برق دار می توانند از طرف های دیگر در دسترس باشند .
تابلوی تمام بسته (enclosed assembly) : تابلویی است که در تمام جهات به استثنای سطح نصب آن که ممکن است باز باشد ، کاملا بسته بوده و حداقل درجۀ حفاظت آن می باشد .
تابلوی سلولی (cubicle type assembly) : تابلوی تمام بسته ای است که از نوع ایستاده می باشد و ممکن است از چند قسمت و یا خانه تشکیل شده باشد .
تابلوی چند سلولی (multi cubicle type assembly) : ترکیبی از چند سلول که از نظر مکانیکی به هم پیوسته اند .
تابلوی میزی (desk type assembly) : تابلوی تمام بسته ای که صفحۀ کنترل آن افقی یا شیب دار و یا ترکیبی از این دو باشد .
تابلوی جعبه ای (box type assembly) : تابلوی تمام بسته ای که برای نصب روی سطوح قائم در نظر گرفته شده است .
تابلوی چند جعبه ای (multi box type assembly) : ترکیبی است از چند جعبه که به صورت مکانیکی به هم پیوسته بوده و ممکن است روی قاب نگهدارنده واحد و یا قاب های مجزا نصب شود .
محل نصب : تابلوهای برق را می توان از نظر محل نصب به دو گروه کلی تقسیم کرد .
تابلوی داخل ساختمان (assembly for indoor installation) : تابلویی که برای استفاده در محل هایی با شرایط عادی کار در داخل ساختمان ها طراحی شده است .
تابلوی هوای آزاد (assembly for outdoor installation) : تابلویی که برای استفاده در شرایط عادی کار در هوای آزاد طراحی شده است .
روش نصب : قسمت های ثابت - قسمت های کشوئی و جداشدنی
قسمت های ثابت (fixed parts) : در مورد قسمت های ثابت ، وصل کردن و یا باز کردن اتصالات مدارهای اصلی باید در مواقعی که تابلو بی برق است عملی شود . به طور کلی برداشتن یا نصب کردن قسمت های ثابت ایجاب می کند که از نوعی ابزار استفاده شود ، در این صورت جدا کردن یکی از قسمت های ثابت ممکن است به بی برق کردن همۀ تابلو یا قسمتی از آن منجر شود . تابلوهای ثابت یا از انواع تابلوهای این گروه می باشند ، تابلوهای مدولار فیکس نیز نوعی از تابلوهای ثابت می باشد که هر سلول آن دارای شینه کشی عمودی و قابل خانه بندی متغییر (محفظه بندی شده) برای نصب کلیدهای مختلف ، فیوزها و وسایل اندازه گیری برای فرمان موتورها و غیره بوده و مجهز به شینۀ اصلی افقی برای توسعه به چند سلول نیز می باشد .
قسمت های کشوئی و جداشدنی (withdraw able & removable parts) : سلول های دارای قسمت های جدا شدنی و قسمت های کشوئی به نحوی طراحی می شوند که بتوان تجهیزات الکتریکی آنها را با ایمنی کامل از مدار اصلی در حالیکه برق دار است جدا و یا به آن وصل کرد . در این سلول می باید حداقل فواصل هوایی و خزشی در وضعیت های مختلف و همچنین در حال تغییر از وضعی به وضع دیگر ، رعایت شوند . قسمت های جدا شدنی باید دارای حالات وصل و جدا شده باشند ؛ تابلوهایی که دارای تجهیزات کشوئی و یا plug in می باشند ، در این گروه قرار می گیرند . قسمت های کشوئی علاوه بر حالت های فوق باید دارای حالت قطع بوده و ممکن است دارای حالت آزمون یا وضعیت آزمون نیز باشند و استقرار در محل هر یک از حالات می باید به روشنی قابل تشخیص باشد ، این نوع از تابلوها به نام تابلوهای کشوئی شناخته می شوند و دارای حالات ذیل می باشند :
حالت وصل : در این حالت مدار قدرت و فرمان وصل بوده و برق دار هستند .
حالت آزمون : در این حالت مدار قدرت قطع بوده و مدار فرمان وصل و برق دار می باشد .
حالت قطع : در این حالت مدار قدرت و فرمان هر دو قطع می باشند .
مکانیزم قطع و وصل مدار قدرت و فرمان بسته به نوع طرح تفاوت دارد ولی اصولا برای مدارقدرت از طریق اتصال چند شاخه که به باسبارهای قائم درگیر می شود و برای مدارهای فرمان از طریق ترمینال های نر و مادگی و یا کانکتور می باشد .
شرایط نصب از نظر قابلیت انتقال :
تابلوی ثابت : تابلویی که برای نصب دائمی طراحی شده است ؛ مثل نصب روی کف یا دیوار
تابلوی قابل انتقال : تابلویی است که به سادگی از یک محل مورد استفاده به محل دیگر قابل انتقال بوده و بدین منظور طراحی شده است .
درجه حفاظت : درجۀ حفاظتی را که یک تابلو در برابر تماس با قسمت های برق دار ، ورود اجسام خارجی و مایعات تأمین می کند ، توسط علامت اختصاری مشخص می شود .
Ip: Index of Protection
Ip: International Protection
اعدادی که در سمت راست علامت اختصاری قرار می گیرند به ترتیب بیانگر :
حفاظت در مقابل اجسام خارجی و تماس
حفاظت در مقابل نفوذ آب و مایعات
حفاظت در مقابل ضربه های مکانیکی
علاوه بر مشخصات فوق درجۀ حفاظتی دیگری نیز برای حفاظت در برابر مواد قابل انفجار تعریف می گردد :
(Sch) : حفاظت در برابر هوایی که ممکن است قابل احتراق یا انفجار باشد .
 
جدول زیر درجات حفاظت و تعریف آنها را که در بندهای 1 و 2 آمده است ، نشان می دهد .
اولین رقم سمت راست Ip   دومین رقم سمت راست Ip
0   0
1   1
2   2
3   3
4   4
5   5
6   6
_   7
_   8
 
بند 1 - اولین رقم مشخصه Ip : حفاظت در مقابل تماس و نفوذ اجسام خارجی
(0) - حفاظتی از اشخاص در مقابل تماس با قسمت های متحرک و باردار در داخل تابلو وجود ندارد . حفاظتی برای وسایل در برابر نفوذ اجسام جامد خارجی وجود ندارد .
(1) - حفاظت در مقابل تماس اتفاقی سطح بزرگی از بدن با قسمت های متحرک و یا باردار داخل تابلو وجود دارد . حفاظت در مقابل نفوذ اجسام جامد خارجی بزرگ وجود دارد .
(2) - حفاظت در مقابل تماس با قسمت های متحرک و یا باردار داخل تابلو با انگشتان وجود دارد . حفاظت در مقابل نفوذ اجسام خارجی جامد با اندازۀ متوسط وجود دارد .
(3) - حفاظت در برابر تماس با قسمت های متحرک و یا باردار در داخل تابلو توسط ابزار ، سیم ها و یا اجسامی با ضخامت بیش از وجود دارد . حفاظت در برابر نفوذ اجسام خارجی جامد کوچک وجود دارد .
(4) - حفاظت در برابر تماس با قسمت های متحرک و یا باردار داخل تابلو توسط ابزار ، سیم ها و یا اجسامی با ضخامت بیش از وجود دارد . حفاظت در برابر نفوذ اجسام خارجی جامد کوچک وجود دارد .
(5) - حفاظت کامل در مقابل تماس با قسمت های متحرک و یا باردار در داخل تابلو وجود دارد . حفاظت در مقابل گرد و غبار مضر وجود دارد ؛ از نفوذ گرد و غبار بطور کلی جلوگیری نشده اما گرد و غبار نمی تواند به مقداری که در عملکرد رضایتبخش وسایل داخل تابلو تداخل نماید داخل تابلو شود .
(6) - حفاظت کامل در مقابل تماس با قسمت های متحرک و یا باردار در داخل تابلو وجود دارد . حفاظت در مقابل نفوذ گرد و غبار وجود دارد .
بند 2 - دومین رقم مشخصه Ip : حفاظت در مقابل نفوذ آب و مایعات
(0) - حفاظتی وجود ندارد .
(1) - حفاظت در مقابل قطرات آب متراکم وجود دارد . قطرات آب متراکم شده نباید اثر مضری بر روی تابلو داشته باشد .
(2) - حفاظت در مقابل قطرات مایع وجود دارد . زمانی که تابلو با زاویۀ نسبت به حالت عمودی ایستاده است ، قطرات مایع که بر روی تابلو می ریزند نباید آسیبی به تابلو برسانند .
(3) - حفاظت در مقابل باران وجود دارد . آب باران در زاویه مساوی و کوچکتر از نسبت به حالت عمودی نباید هیچگونه آسیبی به تابلو برساند .
(4) - حفاظت در مقابل پاشیدن مایع وجود دارد . مایع پاشیده شده از هر جهت نباید آسیبی به تابلو برساند .
(5) - حفاظت در مقابل پاشیدن آب تحت فشار وجود دارد . آب پاشیده شده از یک شیلنگ فشار بالا از هر جهت نباید آسیبی به تابلو برساند .
(6) - حفاظت در مقابل شرایط موجود در عرشۀ کشتیها وجود دارد . آب دریا در هنگام طوفان نباید داخل تابلوهای تحت شرایط پیش بینی شده شود .
(7) - حفاظت در مقابل غوطه ور شدن در آب وجود دارد . نباید امکان ورود آب به داخل تابلو تحت شرایط پیش بینی شدۀ فشار و زمان وجود داشته باشد .
(8) - حفاظت در مقابل غوطه ور شدن در آب برای مدت زمان نامشخص تحت فشار مشخص شده وجود دارد .
روش های حفاظت افراد : روش های حفاظت افراد در برابر برق گرفتگی یکی دیگر از طبقه بندی های تابلوهای فشار ضعیف و متوسط می باشد .
حفاظت در برابر هر نوع تماس مستقیم و غیرمستقیم ( با استفاده از ولتاژ خیلی پائین )
حفاظت در برابر تماس مستقیم به منظور جلوگیری از تماس خطرناک اشخاص با قسمت های برق دار که می توان با رعایت روش های مناسب در ساختمان تابلو یا انجام اقدامات اضافی در هنگام نصب تابلو تأمین نمود .
حفاظت در برابر تماس غیر مستقیم مانند حفاظت با استفاده از مدارهای حفاظتی برای اتصالی در داخل تابلو و در مدارهای خروجی تغذیه شده از تابلو ، حفاظت با استفاده از اقداماتی غیر از مدارهای حفاظتی مانند جدایی مدارها و عایق بندی کامل و ...
تخلیۀ بارهای الکتریکی : در مورد تابلوهایی که پس از قطع برق ، بار الکتریکی خطرناک در آنها باقی می ماند ، ( مانند خازن ها و غیره ) می باید لیبلی با نشانۀ خطر نصب نمود .
راهروی عملیاتی و نگهداری در داخل تابلوها : این راهروها می باید همیشه قفل باشند و همچنین مجهز به علائم اخطاری واضح باشند.

توان راکتیو

مقدمه:

می دانیم در شبکه های جریان متناوب توان ظاهری که از مولدها دریافت می شود به دو بخش توان مفید و غیر مفید تقسیم می شود . نحوه این تقسیم به شرایط مدار بستگی دارد به این معنی که هر قدر ضریب توان (

CosΦ) به یک نزدیکتر باشد سهم توان مفید بیشتر است. CosΦ) به یک نزدیکتر باشد سهم توان مفید بیشتر است . این اتفاق در مدارتی رخ می دهد که مصارف اهمی آن بیشتر است .مانند سیستمهای روشنایی یا تولید گرما توسط انرژی برق . اما می دانیم که سهم عمده مصارف شبکه ها را مصرف کننده های (اهمی – سلفی ) دریافت می کنند . مانند الکتروموتورها – ترانسفورماتورهای توزیع – چوکها و .... که درآنها سیم پیچ یا سلف نقش اصلی را ایفا می کند . در سیمپیچها به علت خاصیت ذخیره سازی انرژی الکتریکی بصورت میدان مغناطیسی توان همواره بین شبکه و سلف رد و بدل می شود . سلف در یک چهارم زمان تناوب توان دریافت می کند و در یک چهارم بعدی زمان ، توان را به شبکه پس می دهد . درست است که نتیجه ریاضی این عمل یعنی عدم مصرف انرژی زیرا توان داده شده به سلف با توان دریافت شده از ان برابر است اما در عمل این اتفاق رخ نمی دهد زیرا توان پس داده شده به شبکه امکان استفاده را برای مولد ایجاد نمی کند و این توان در هر حالتی از مولد دریافت شده است . و برای رسیدن به مصرف کننده اهمی – سلفی از شبکه توزیع شامل : سیمها – کابلها و ... عبور کرده است .

- اضافه شدن جریان مولد و درنتیجه نیاز به مولدهایی با توانهای بیشتر

- چون جریان شبکه زیاد می شود به سیمها و کابلهایی با سطح مقطع بالاتر برای کاهش افت ولتاژ نیاز است که این موضوع هزینه اولیه شبکه را افزایش می دهد .

- اتلاف توان در شبکه های توزیع بصورت حرارت روی می دهد در نتیجه هر کاری کنید نمی توانید از این اتلاف جلوگیری کنید . نتیجه این اتلاف توان ،کاهش ولتاژ مصرف کننده می باشد که این موضع راندمان مصرف کننده را پایین می آورد .

- نمی توان این توان را به مصرف کننده های اهمی سلفی تحویل نداد زیرا کار آنها مختل می شود .

اتصال خازن به شبکه:

خازنهای اصلاح ضریب توان باید در شبکه بصورت موازی قرار گیرند . برای اینکار در شبکه های تکفاز باید به فاز و نول وصل شوند و در شبکه های سه فاز پس از اتصال بصورت ستاره یا مثلث آنگاه به سه فاز متصل می شوند .

این خازنها باید از انواعی انتخاب شوند که بتوانند دایمی در مدار قرار گیرند پس باید بتوانند ولتاژ شبکه را تحمل کنند در محاسبه خازن از انواعی استفاده می شود که ولتاژ مجاز آنها 15% بیشتر از ولتاژ شبکه باشد .

محاسبه خازن:

نقش خازن در شبکه کاهش توان راکتیو مصرف کنند های اهمی – سلفی از دید مولدها است . با این اتفاق ضریب توان مفید به یک نزدیک می شود . پس با کنترل ضریب توان امکان کنترل توان راکتیو وجود دارد . این کار بکمک یک کسینوس فی متر صورت می گیرد . یعنی بکمک کسینوس فی متر می توان دریافت که ضریب توان و در نتیجه توان راکتیو در چه وضعیتی قرار دارد .

دامنه تغییرات ضریب توان (

خازن مذکور باید برابر نیاز شبکه باشد در غیر اینصورت خود توان راکتیو از مولد دریافت می کند و همچنین سبب افزایش ولتاژ آن می شود . پس باید خازن مطابق نیاز شبکه محاسبه شود .

CosΦ) :

پرسش : شبکه به چه مقدار خازن نیاز دارد ؟

پاسخ : مقداری که ضریب توان را به یک نزدیک کند . این مقدار خازن خود توان راکتیوی ایجاد می کند که توان راکتیو مصرف کننده اهمی – سلفی را جبران می کند . پس مقدار خازن به مقدار توان راکتیو مدار بستگی دارد . هر قدر این توان قبل از خازن گذاری بیشتر باشد ، اندازه خازن نیز بزرگتر خواهد بود .

با توجه به مطالب گفته شده باید برای محاسبه خازن دو مقدار مشخص شود :

یک – مقدار ضریب توان شبکه قبل از خازن گذاری

دو – مقدار ضریب توان شبکه بعد از خازن گذاری که انتظار داریم شبکه به آن برسد

سه - اندازه توان اکتیو

پس از تعیین این مقادیرمراحل زیر را پی می گیریم . برای مقدار ضریب توان مطلوب مثلا عدد 9/0 مقدار خوبی است . حال دو مقدار ضریب توان داریم یکی ضریب توان شبکه قبل از خازن گذاری و دیگری ضریب توان مطلوب که می خواهیم با گذاردن خازن به آن برسیم . بکمک رابطه زیر مقدار توان راکتیو مورد نظر را که با آمدن خازن تامین می شود محاسبه می کنیم . ( توجه : در خرید خازنهای اصلاح ضریب توان بجای فارد برای تعیین ظرفیت خازن از میزان توان راکتیو آن خازن سخن گفته می شود.)

انواع توان در شبکه های توزیع:

می دانیم در شبکه های جریان متناوب توان ظاهری که از مولدها دریافت می شود به دو بخش توان مفید و غیر مفید تقسیم می شود . نحوه این تقسیم به شرایط مدار بستگی دارد به این معنی که هر قدر ضریب توان (

نتیجه اینکه سلف توانی را از مولد دریافت می کند اما این توان را به شبکه پس می دهد . این توان قابل استفاده نیست و در مسیر عبور تلف می شود . پس مقدار از توان تلف می شود . مصرف کننده های فوق برای انجام اینکار به توان مذکور نیاز دارند اما این توان برای شبکه مضر است و زیانهای زیر را در پی دارد :

برق جریان متناوب

تعریف

 یک جریان متناوب (AC ) جریان الکتریکی است که در آن اندازه جریان به صورت چرخه‌ای تغییر می‌کند، بر خلاف جریان مستقیم که در آن اندازه جریان مقدار ثابتی می‌ماند. شکل موج معمول یک مدار AC عموما یک موج سینوسی کامل است، چرا که این شکل موج منجر به انتقال انرژی به موثرترین صورت می‌شود. اما به هر حال در کاربردهای خاص ، شکل موجهای متفاوتی نظیر مثلثی یا مربعی نیز استفاده می‌شود.

تاریخچه

توان الکتریکی با جریان متناوب ، نوعی از انرژی الکتریکی است که برای تغذیه تجاری الکتریسیته به عنوان توان الکتریکی ، از جریان متناوب استفاده می‌کند. ویلیام استنلی جی آر کسی است که یکی از اولین سیم پیچهای عملی را برای تولید جریان متناوب طراحی کرد. طراحی وی یک صورت ابتدایی ترانسفورماتور مدرن بود که یک سیم پیچ القایی نامیده می‌شد. از سال 1881م تا 1889م سیستمی که امروزه استفاده می‌شود، توسط نیکلا تسلا ، جرج وستینگهاوس ، لوییسین گاولارد ، جان گیبس و الیور شالنجر طراحی شد.سیستمی که توماس ادیسون برای اولین بار برای توزیع تجاری الکتریسیته بکار برد، به دلیل استفاده از جریان مستقیم محدودیتهایی داشت که در این سیستم برطرف شد. اولین انتقال جریان متناوب در طول فواصل بلند در سال 1891م نزدیک تلورید کلورادو اتفاق افتاد که چند ماه بعد در آلمان ادامه پیدا کرد. توماس ادیسون به علت اینکه حقوق انحصاری اختراعات متعددی را در فن آوری جریان مستقیم «DC» داشت، استفاده از جریان مستقیم را به شدت حمایت می‌کرد، اما در نهایت جریان متناوب به عرصه استفاده عمومی آمد. چارلز پروتیوس استینمتز از جنرال الکتریک بسیاری از مشکلات مرتبط با تولید الکتریسیته و انتقال آن را با استفاده از جریان متناوب حل کرد.

توزیع برق و تغذیه خانگی

بر خلاف جریان DC ، جریان AC را می‌توان توسط یک ترانسفورماتور به سطوح مختلف ولتاژی انتقال داد. هر چه میزان ولتاژ افزایش یابد، انتقال توان هم موثرتر صورت خواهد گرفت. افزایش میزان قابلیت انتقال توان به علت قانون اهم است، تلفات انرژی الکتریکی وابسته به عبور جریان از یک هادی است. تلفات توان به علت جریان توسط رابطه P = Ri2t محاسبه می‌شود، بنابراین اگر جریان دو برابر شود، تلفات چهار برابر خواهد شد.با استفاده از ترانسفورماتور ، ولتاژ را می‌توانیم به یک ولتاژ بالا افزایش دهیم تا بتوانیم توان را در طول فواصل بلند در سطح جریان پایین انتقال داده و در نتیجه تلفات کاهش یابد. سپس می‌توانیم ولتاژ را دوباره به سطحی که برای تغذیه خانگی بی خطر باشد، کاهش دهیم.تولید الکتریکی سه فاز بسیار عمومی است و استفاده‌ای موثرتر از ژنراتورهای تجاری را برای ما ممکن می‌سازد. انرژی الکتریکی توسط چرخش یک سیم پیچ داخل یک میدان مغناطیسی در ژنراتورهای بزرگ و با هزینه بالا ایجاد می‌شود. اما به هر حال جای دادن سه سیم پیچ جدا روی یک محور (بجای یک سیم پیچ) ، هم نسبتا آسان و هم مقرون به صرفه است. این سیم پیچها روی محور ژنراتورها نصب شده‌اند اما از نظر فیزیکی جدا هستند و دارای یک اختلاف زاویه 120 درجه‌ای نسبت به هم هستند. سه شکل موج جریان تولید می‌شود که دارای اختلاف فاز 120 درجه‌ای نسبت به هم ، اما اندازه‌های یکسان هستند.توزیع الکتریسیته سه فاز بطور وسیعی در ساختمانهای صنعتی و توزیع الکتریسیته تک فاز در محیطهای خانگی بکار می‌رود. نوعا یک ترانسفورماتور سه فاز ممکن است مسیرهای مختلفی را با یک فاز متفاوت برای بخشهای مختلف هر مسیر تغذیه کند. سیستمهای سه فاز به گونه‌ای طراحی شده‌اند که در محل بار متعادل باشند، اگر باری بطور صحیح متعادل شده باشد، جریانی از نقطه خنثی عبور نخواهد کرد. این بدین مفهوم است که می‌توان جریان را تنها با سه کابل بجای شش کابل که در غیر این صورت مورد نیاز است، انتقال داد. گفتنی است که برق سه فاز در واقع نوعی از سیستم چند فازه است. در بسیاری از موارد تنها یک برق تک فاز برای تغذیه روشنایی خیابانها یا مصرف کننده‌های خانگی مورد نیاز است. وقتی که یک سیستم توان الکتریکی سه فاز داریم، یک کابل چهارمی که خنثی است را در توزیع خیابانی قرار می‌دهیم تا برای هر خانه یک مدار کامل را فراهم کنیم، «یعنی هر خانه می‌تواند از یکی از کابلهای فاز و کابل خنثی برای مصرف استفاده کند». خانه‌های مختلف در خیابان از فازهای مختلف استفاده می‌کنند یا وقتی که مصرف کننده‌های زیادی به سیستم متصلند، آنها را به صورت مساوی در طول برق سه فاز پخش می‌کنند تا بار روی سیستم متعادل شود. بنابراین کابل تغذیه هر خانه معمولا تنها شامل یک هادی فاز و نول و احتمالا با یک پوشش آهنی زمین شده ، است.برای اطمینان یک سیم سومی هم اغلب بین هر یک از وسایل الکتریکی در خانه و صفحه سوییچ الکتریکی اصلی یا جعبه فیوز وصل می‌شود. این سیم سوم در انگلستان و اکثر کشورهای انگلیسی زبان سیم earth و در آمریکا سیم ground خوانده می‌شود. در صفحه سوییچ اصلی سیم earth را به سیم نول و نیز به یک تیرک متصل به زمین یا هر نقطه earth در دسترس (برای آمریکاییها نقطه (ground نظیر لوله آب ، متصل می‌کنند.در صورت وقوع خطا ، سیم زمین می‌تواند جریان کافی را برای راه اندازی یک فیوز و جدا کردن مدار دارای خطا ، از خود عبور دهد. همچنین اتصال زمین به این مفهوم است که ساختمان مجاور دارای ولتاژی برابر ولتاژ نقطه خنثی است. شایعترین نوع خطای الکتریکی (شوک) در صورتی رخ می‌دهد که شیئی (معمولاً یک نفر) بطور تصادفی بین یک هادی فاز و زمین مداری تشکیل دهد. در این صورت یک جریان خطا از فاز به زمین ایجاد می‌شود که به جریان پس ماند معروف است. یک مدار شکن جریان پس ماند طراحی شده است تا چنین مشکلی را شناسایی کند و مدار را قبل از اینکه شوک الکتریکی منجر به مرگ شود قطع کند.در کاربردهای صنعتی (سه فاز) بسیاری از قسمتهای مجزای سیستم خنثی به زمین متصلند که این امر موجب می‌شود تا جریان های کوچک زمین ، که همواره بین یک ژنراتور و یک مصرف کننده (بار) در حال عبور هستند را متعادل کند. این سیستم زمین کردن این اطمینان را به ما می دهد که اگر خطایی رخ دهد، جریانی که از نقطه خنثی می گذرد به یک سطح قابل کنترل محدود شده باشد. این روش به سیستم خنثی زمین چندگانه معروف است.

 

فرکانسهای AC در کشورها

اکثر کشورهای جهان سیستمهای الکتریکی‌شان را روی یکی از دو فرکانس 60 و 50 هرتز استاندارد کرده‌اند. لیست کشورهای 60 هرتز که اغلبشان در دنیای جدید قرار دارند کوتاهتر است، اما نمی‌توان گفت که 60 هرتز کمتر معمول است.

·         کشورهای 60 هرتز عبارتند از: ایران ،ساموای امریکا ، آنتیگوا و باربودا ، آروبا ، باهاماس ، بلیز ، برمودا ، کانادا ، جزایر کیمان ، کلمبیا ، کاستاریکا ، کوبا ، جمهوری دمونیکن ، السالوادور ، پلینسیای فرانسه ، گوام ، گواتمالا ، گیانا ، هاییتی ، هندوراس ، کره جنوبی ، لیبریا ، جزایر مارشال ، مکزیک ، میکرونسیا ، مونت سرات ، نیکاراگویه ، جزایر ماریانای شمالی ، پالایو ، پاناما ، پرو ، فیلیپین ، پرتوریکو ، ساین کیتس و نویس ، سورینام ، تایوان ، ترینیداد توباگو ، جزایر ترکس و کیاکوس ، ایالات متحده ، ونزولا ، جزایر ویرجین ، جزیره ویک.

·         این کشورها دارای سیستمهایی با فرکانس مختلط 60 و 50 هرتز‌اند: بحرین ، برزیل )اغلب فرکانس 60) ، ژاپن (فرکانس 60 هرتز در زمان حضور غربیها).اغلب کشورها به گونه‌ای استاندارد تلویزیون شان را انتخاب کرده اند که با فرکانس خطوط برقشان متناسب باشد. استاندارد NTSC برای کار با فرکانس خطوط برق 60 هرتز طراحی شده است، در حالیکه PAL و SECAM برای فرکانس خطوط 50 هرتز طراحی شده است، اما نسخه 60 هرتز PAL هم وجود دارد، برای مثال در برزیل PAL-M ارائه دهنده وضوح PAL و چشمک تصویر پایین NTSC است.عموماً این مطلب پذیرفته شده است که نیکلا تسلا فرکانس 60 هرتز را به عنوان کمترین فرکانسی که منجر به عدم بروز پدیده چشمک زنی قابل مشاهده در روشناییهای خیابانها می‌شد، انتخاب کرد. توان 25 هرتز بیش از آنی که در آبشار نیاگارا تولید شود، در اونتاریو و آمریکای شمالی استفاده می‌شده است.هنوز هم ممکن است برخی از ژنراتورهای 25 هرتز در آبشار نیاگارا مورد استفاده واقع شوند. فرکانس پایین طراحی موتورهای الکتریکی کم سرعت را ساده می‌سازد و می‌توان آنرا بصورت بهتر و موثرتری تولید کرده و انتقال داد، اما منجر به چشمک زنی قابل ملاحظه‌ای در روشناییها می‌شود. کاربردهای ساحلی و دریایی ممکن است گاها فرکانس 400 هرتز را به علت مزیتهای مختلف فنی مورد استفاده قرار دهند. برق 16.67 هرتزی هم هنوز در برخی از سیستمهای راه آهن اروپا مانند سوئد به چشم می‌خورد.

فیبر نوری

وقتی پیامی مانند دیتا، تصویر، صدا و یا فیلم قرار است انتقال داده شود نیاز به محیط انتقالی مثل فضای آزاد که ارتباط «وایرلس»بی‌سیم را شامل می‌شود، خط دوسیمه تلفنی، کابل کواکسیال و یا فیبرنوری است. در حقیقت می‌توان گفت از نظر ساختاری فیبر نوری یک موج‌ بر استوانه‌ای از جنس شیشه یا پلاستیک است که از دو ناحیه مغزی و غلات یا هسته و پوسته با ضریب شکست متفاوت و دولایه پوششی اولیه و ثانویه پلاستیکی تشکیل شده است فیبرنوری از امواج نور برای انتقال داده‌ها از طریق تارهای شیشه یا پلاستیک بهره می‌گیرد. هرچند استفاده از هسته پلاستیکی هزینه ساخت را پایین می‌آورد، اما کیفیت شیشه را ندارد و بیشتر برای حمل داده‌ها در فواصل کوتاه به کار می‌رود. مغز و غلاف یا هسته و پوسته با هم یک رابط بازتابنده را تشکیل می‌دهند. قطر هسته و پوسته حدود 125 میکرون است (هر میکرون معادل یک میلیونیوم متر است) چند لایه محافظ در یک پوشش حول پوسته قرار می‌گیرد و یک پوشش محافظ پلاستیکی سخت لایه بیرونی را تشکیل می‌دهد این لایه کل کابل را در خود نگه می‌دارد که می‌تواند شامل صدها فیبرنوری مختلف باشد. هر کابل نوری شامل دو رشته کابل مجزا یکی برای ارسال و دیگری دریافت دیتا در نظر گرفته می‌شود با گسترش فناوری‌های اطلاعات و ارسال پهنای باند بیشتر اطلاعات، ما احتیاج به محیط‌های انتقال هدایت شده‌ای داریم که بتواند پهنای باند بیشتری را هدایت کند. پهنای باند بیشتر به معنای ارسال اطلاعات بیشتر یا سرعت بالاتر اطلاعات است. در حقیقت می‌توان گفت ظرفیت و سرعت دو دلیل اصلی استفاده از شبکه فیبرنوری است. امروزه یک کابل مسی انتقال داده را تنها با سرعت یک گیگابایت در ثانیه ممکن می‌کند در حالی که یک فیبرنوری به ضخامت تار مو امکان انتقال‌های چندگانه را به طور همزمان با سرعتی حتی بیشتر از 10 گیگابایت در ثانیه به ما می‌دهد که این سرعت روز به روز افزایش می‌

یابد. از آنجایی که در فیبرنوری ما از امواج نوری یا لیزری استفاده می‌کنیم که دارای فرکانس بسیار بالاتری از ماکروویو است بنابراین می‌توان پهنای باند بیشتری را ارسال کرد. در مخابرات هرچه فرکانس امواجی که می‌خواهیم اطلاعات را روی آن ارسال کنیم بیشتر باشد پهنای باند بیشتری را می‌توانیم انتقال دهیم.

 

 

 

استفاده از فیبرنوری چه مزایایی دارد؟ آیا با انتقال امواج از طریق ماهواره قابل مقایسه است؟

 

اولین مزیتی که فیبرنوری دارد این است که از تمام محیط‌های انتقالی که وجود دارد چه وایرلس و سیمی، و چه هدایت شده و غیرهدایت شده پهنای باند بیشتری به ما می‌دهد یعنی در حقیقت می‌تواند اطلاعات بیشتری ارسال کند. ارتباطات ماهواره‌ای تنها فناوری است که می‌تواند با فیبرنوری در زمینه انتقال داده‌ها رقابت کند. ولی چون فرکانس لیزری که استفاده می‌شود از فرکانسی که در امواج ماهواره‌ای استفاده می‌شود بیشتر است بنابراین داده‌های بیشتری از طریق فیبرنوری انتقال داده می‌شود.استفاده از فیبرنوری یک روش نسبتا ایمن برای انتقال داده است زیرا برعکس کابل‌های مسی که دیتا را به صورت سیگنال‌های الکترونیکی حمل می‌کنند فیبرنوری در مقابل سرقت اطلاعات آسیب‌پذیر نیست. یعنی کابل فیبرنوری را نمی‌توان قطع کرده و اطلاعات را به سرقت برد.

مسئله دیگر ارزان قیمت بودن آن است به ویژه در مقایسه با ارتباطات از طریق ماهواره. یکی دیگر از مزایای فیبرنوری در مقایسه با کابل‌های سیمی و کواکسیان سبک بودن و راحتی تعبیه آن بین دو نقطه است. نکته بعدی این است که سیستم‌های کابلی در طول انتقال نیاز به تکرارکننده یا ریپیتر زیادتری برای تقویت امواج دارند درحالی که برای یک سیستم کابل نوری به علت افت بسیار کمی که دارد تعداد تکرارکننده کمتری استفاده می‌شود باید گفت هرچه فیبر خالص‌تر و دارای طول موج بیشتری باشد پورت‌های نور کمتری جذب و تضعیف سیگنال کمتر می‌شود و در نتیجه نیاز به تکرارکننده که یک سیگنال را دریافت کرده و قبل از ارسال به قطعه بعدی فیبر، آن را تقویت می‌کند کاهش می‌یابد و همین باعث می‌شود قیمت تمام شده سیستم پایین بیاید.

از طرف دیگر فیبرهای نوری از عوامل طبیعی کمتر تاثیر می‌پذیرند. بدین صورت که میدان‌های مغناطیسی و یا الکتریکی شدید بر آن هیچ تاثیری نمی‌گذارد و خطر تداخل امواج پیش نمی‌آید به همین دلیل می‌توان آنها را برخلاف کابل مسی از کنار کابل‌های فشار قوی یا ژنراتورهای برق عبور داد. همچنین خواصی همچون ضد آب بودن آن باعث شده تا از آن، روز به روز به طور گسترده‌تری استفاده شود.

 

 

 

آیا استفاده از فیبرنوری معایبی هم دارد؟

 

برای این که دیگر در فیبرنوری با سیگنال الکتریکی سروکار نداریم باید از ادواتی مثل تقویت‌کننده‌ها و آشکارسازهای نوری استفاده کنیم که تا حدودی گران است. از سوی دیگر از فیبرنوری فقط می‌توان برای انتقال اطلاعات آن هم به صورت شعاع‌های نوری استفاده کرد و نمی‌توان برای انتقال الکتریسیته استفاده کرد.

اتصال فیبرنوری به یکدیگر بسیار مشکل و وقت‌گیر و نیاز به یک کادر فنی سطح بالا دارد یکی از ایرادهای مهمی که به فیبرنوری وارد می‌شود این است که به راحتی کابل‌ها را

نمی‌توان پیچ و خم داد زیرا زاویه تابش نور در داخل آن تغییر کرده و باعث می‌شود نور از سطح آن خارج شود و از طرف دیگر آنها را نمی‌توان به راحتی قطع کرد و برای قطع آنها نیاز به تخصص ویژه‌ای است چون در غیر این صورت زاویه شکست عوض می‌شود.

 

 

 

استفاده از فیبرنوری چه تاثیری در گسترش فناوری اطلاعات و ارتباطات دارد؟

 

امروزه با توجه به سرعت تولید علم و دانش نیاز به افزایش سرعت تبادل آنها بیشتر شده است. دنیا به سمتی می‌رود که از ابزاری استفاده کند که با ارائه پهنای باند بیشتر همزمان تعداد بیشتری به راحتی و با سرعت زیاد اطلاعات را در اختیار داشته باشند یا همزمان بتوانند به راحتی با موبایل یا تلفن صحبت کنند و به اینترنت وصل شوند و فیبرنوری یکی از فناوری‌هایی است که می‌تواند این امکان را فراهم کند.

بکارگیری فیبرنوری برای انتقال اطلاعات از سال 1966 شکل گرفت ولی تا سال 1976 عملا در انتقال داده قابل استفاده نبود ولی اکنون شرکت‌های تلویزیون کابلی و شرکت‌های چند ملیتی جهت انتقال داده‌ها و اطلاعات مالی در سراسر جهان و... از فیبرنوری استفاده می‌کنند. اکنون در ایران با توجه به زیاد شدن کاربران اینترنت، استفاده کنندگان از تلفن ثابت و موبایل و مهم‌تر از همه به خاطر این که ایران در مسیر شاهراه اطلاعات بین اروپا و چین قراردارد ضرورت استفاده از شبکه فیبرنوری حس شده و بهره‌برداری از آن اجرایی می‌شود. البته باید توجه داشت استفاده از فیبرنوری به موازات استفاده از بقیه سیستم‌های انتقال اطلاعات صورت می‌گیرد.

 

 

 

فیبرنوری چه کاربردهای دیگری دارد؟

 

استفاده از حسگرهای فیبرنوری برای اندازه‌گیری کمیت‌های فیزیکی مانند جریان الکتریکی، میدان مغناطیسی، فشار، حرارت و جابجایی آلودگی آب‌های دریا، سطح مایعات، تشعشعات پرتوهای گاما و ایکس بهره گرفته می‌شود. یکی دیگر از کاربردها فیبرنوری در صنایع دفاعی و نظامی است که از آن جمله می‌توان به برقراری ارتباط و کنترل با آنتن رادار، کنترل و هدایت موشک‌ها و ارتباط زیردریایی‌ها اشاره کرد. فیبرنوری در پزشکی نیز کاربردهای فراوانی دارد از جمله در دزیمتری غدد سرطانی، شناسایی نارسایی‌های داخلی بدن، جراحی لیزری، استفاده در دندانپزشکی و اندازه‌گیری خون و مایعات بدن.

ظرفیت و سرعت زیاد و ایمنی اطلاعات از دلایل اصلی استفاده از شبکه فیبرنوری است

فیبرنوری در اندازه‌گیری کمیت‌های فیزیکی، صنایع دفاعی و نظامی و پزشکی به کار گرفته می‌شود

شبکه ملی فیبر نوری

با افتتاح شبکه ملی فیبر نوری کشور به طول 57 هزار کیلومتر، همه شهرها و مراکز استان‌ها و نقاط مرزی کشور از شبکه زیرساختی لازم با کیفیت بالا برخوردار می‌شوند. این شبکه قرار است به شبکه فیبر نوری کشورهای همسایه نیز متصل شود.

 

 

 

 مزایای فیبرنوری در مقایسه با کابل مسی:

 

فیبرنوری سبک تر و ارزانتر از کابل مسی است و حجم کمتری را اشغال می کند. ظرفیت انتقال فیبرنوری چندین هزار برابر کابل مسی است، بطوریکه در کشور ژاپن، یک تار فیبرنوری نه هزار و 500 ارتباط و درایران می تواند حدود چهار هزار ارتباط تلفنی را برقرار کند.

 

فیبرنوری فاقد اثرات نویز محیطی است و طول عمرش هم بیشتر است، همچنین در انتقال اطلاعات تلفات کمتری دارد.

 

  در مخابرات: برای انتقال پیام های مخابراتی با سرعت و ظرفیت بالا در ارتباط بین مراکز تلفن شهری و انتقال اطلاعات شبکه رایانه ای و همچنین برای برقرای ارتباط تلویزیونی به صورت CABLE-TV

 

-   در پزشکی: برای اندوسکوپی و جراحی لیزری

 

-   درصنعت: برای انتقال نور لیزر به منظور برش دقیق فلزات، شبکه بندی رایانه های صنعتی

 

-   در احساسگرها ( SENSORS ) به منظور اندازه گیری فشار جریان برق، حرارت، پلاریزاسیون، شتاب و چرخش

 

-    در امور نظامی برای هدایت موشکهای محل یاب و ...

یک مقاله درباره PSS

یک مقاله خلاصه درباره PSS گذاشتم که میتونید او رو از لینک زیر دریافت کنید.

      Pdf  67.7kb    Download